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This article proposes that genetic and molecular ecotoxicology can play an important role in making policy and risk assessment decisions concerning
xenobiotics. It calls for a greater awareness by ecotoxicologists to the effects in wildlife and humans resulting from transgenerational exposure to
synthetic chemicals that interfere with gene expression and differentiation. The difficulty of recognizing these effects on the endocrine, immune,
and nervous systems in developing embryos is described and suggests why effects of this nature have traditionally not been addressed when
determining risk to synthetic chemicals. Specific examples are cited of environmental effects on hormonally responsive tissue in wildlife populations
which could be used as models for assessing human exposure to synthetic chemicals. Evidence is presented that the environmental load of syn-
thetic chemicals has reached critical levels at which wildlife and human health are at risk. - Environ Health Perspect 1 02(Suppl 12):55-59 (1994)
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Introduction

This article presents examples of environ-
mental effects on hormonally responsive
tissue in troubled wildlife populations that
provide a model for assessing previously
overlooked human health hazards associ-
ated with exposure to synthetic chemicals.
The difficulty of recognizing these effects
on the endocrine, immune, and nervous

systems in wildlife and humans explains
why the problems are usually not discov-
ered until they become quantifiable at the
population level. In the past, health effects
of this nature were not addressed when
determining the safety of synthetic chemi-
cals. Consequently, endocrine-disrupting,
synthetic chemicals once considered benign
are now an integral part of the global
ecosystem posing an emerging threat to

biodiversity.
The number of synthetic chemicals that

are capable of disrupting the endocrine sys-

tem continues to grow as they are serendip-
ituosly (1,2) or deliberately (3) discovered.
Among the chemicals are fungicides, insec-
ticides, herbicides, components in plastics
and detergents, and other industrial prod-
ucts and by-products (4). These manmade
chemicals look like, or interfere with,
endogenously produced hormones, neuro-

transmitters, growth factors, and inhibiting
substances. They invade the environment
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of the embryo and change its course of
development (5). Effects not often
expressed overtly in the parent are mani-
fested as second generation sequelae of
changes in the architecture and function of
the endocrine, immune, and nervous sys-
tems of offspring exposed during critical
periods of organ development (5).

A number of the endocrine disruptive
effects reported in wildlife populations
have been replicated in confined wild ani-
mals (6,7) and laboratory animals using
single xenobiotics (3,8). However, in the
real world, exposure involves multiple
xenobiotics making causal links difficult.
The effects are not necessarily expressed as
gross physical defects that are visibly recog-
nizable, but instead are expressed as losses
of function which until recently have not
been described. Consequently, with
wildlife and humans alike, a generation
may pass before the effects become appar-
ent, and only after the problem is wide-
spread and has reached population
proportion (9,10).

Many of the persistent endocrine-dis-
rupting xenobiotics are found in the repro-
ductive tissues of animals, including
humans (11). However, recent findings
that only one, very low, dose of dioxin
administered during gestation can change
the sexual development of rat offspring
demonstrate that a xenobiotic need not be
persistent nor bioaccumulative to interfere
with the development of vital systems.
Timing of exposure during gestation is crit-
ical (8). These recent dioxin studies also
emphasize the importance of broadening
testing protocols for all chemicals destined
to become a part of commerce that will
come in contact with large numbers of

wildlife and humans. Short-lived chemicals
that "hit and run" might never be linked
with in utero damage unless they are care-
fully screened via multigenerational studies
designed to detect functional changes.
Unfortunately, the current substitutes for
the older, more persistent bioaccumulative
chemicals, such as the DDT and PCB
analogs, have not been screened for their
disruptive effects on the differentiation of
organ systems.

Wildlife
A comprehensive review of the literature on
the health status of birds, fishes, mammals,
and reptiles in the northern hemisphere
reveals widespread instability, decline, and
extirpation among populations (12,13).
Among those animals that can reproduce,
however, aberrant development expressed
in their offspring often goes unseen because
the young are kept in seclusion, making it
difficult to build a case for research in func-
tional teratology. To date, some of the
most convincing wildlife research on trans-
generational loss of function has been
accomplished during the breeding season
among nesting colonies of egg-laying
species [(14); T Gross, L Guillette, per-
sonal communication, re: turtles and alliga-
tors]. Compared with the geographic scope
and seriousness of the problem, however,
there has been little support for research to
determine the cause of the problems.
Perhaps this is because infertility among
adult animals that leads to population attri-
tion is difficult to detect and does not catch
the interest of public health authorities and
funding sources compared with more obvi-
ous diseases such as cancer.
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Follow-up studies on troubled wildlife
populations have revealed a number of
conditions associated with reproductive
success. Depending upon the species and
study designs, these have been measured as
reductions in embryo hatchability (15) and
viability (16); chick (17) and fry survivor-
ship (18); egg size and numbers (19);
numbers of animals reaching sexual matu-
rity (20); production of endogenous hor-
mones, such as thyroid hormones (7,21),
estrogen (22), testosterone (23,24), and
retinols (7), as well as immune-compe-
tency. Increases in thyroid (25) and liver
size (17); liver enzyme induction (17);
highly carboxylated porphyrins (26); num-
bers of animals exhibiting sex reversal
(6,27,28); spontaneous abortions (29);
hermaphroditism (30); sex-linked birth
defects; assymetrical brains (31) and skulls
(32); and unusual behavior (17,33) have
been reported as well. Regarding sex-linked
birth defects, M Fry (personal communica-
tion) has reported that in a study of
crossed-billed double-crested cormorants,
the birth defects all were in phenotypic
females (n= 100). In another study, of
crossed-billed bald eagles discovered in
1993, all birth defects were in females (T
Kubiak, personal communication; n = 3).

The above effects are not the result of
mutations, but are epigenetic in nature.
They are the result of changes in gene
expression through many mechanisms,
such as blockage, modulation, or improper
timing, the results of which are unpre-
dictable in most cases (34). Scientists and
regulators have sought mutational answers
to the problem because of the need for
quantifiable standards for regulatory pur-
poses and to respond to society's fixation
on cancer. However, current standards and
testing protocols for synthetic chemicals
need to be reevaluated, opening new
research opportunities for molecular and
genetic ecotoxicologists. Obviously more
needs to be learned about the mechanism
of action of endocrine disruption.

The large-scale mortality among dolphin,
porpoise, seal, and whale populations com-
mencing in 1987 (35-38) has generated a
number of questions. Why, suddenly in one
year in widely disconnected geographic
regions in the northern hemisphere should
this occur? In this case, long-lived, toothed
mammals that are obligate fish-eaters exhib-
ited symptoms of immune incompetency
and were affected by new strains of viruses
(one specific to dolphins, another to seals,
and another to porpoises) or by naturally
produced marine toxins (39).

In an effort to explain the sudden onset
of marine mammal die-offs, it is important
to keep in mind that mature animals in the
first generation exposed to xenobiotics gen-
erally do not display obvious effects as a
result of their exposure (40). If the trans-
generational hypothesis holds, wide-scale
immune incompetency would not appear
until the second generation (41,42). Were
those mammals that succumbed in the
recent die-offs second generation individu-
als whose endocrine and immune systems
were constructed differently because of in
utero exposure to xenobiotics? And were
some of the older animals that died indi-
viduals whose immune systems had
reached threshold levels of effect as the
result of years of high-dose exposure?
These animals held some of the highest
concentrations of organochlorine chemicals
ever reported (43).

The Human Connection
Table 1 provides an historical perspective
on widespread exposure to xenobiotics for
humans, a long-lived species, and may pro-
vide a clue to the marine mammal prob-
lem. PCBs were first manufactured and
used in 1929, DDT in 1938. The 1940s
are often referred to as the birth of the
chemical revolution, driven by new tech-
nology during and immediately following
World War II (44). It was during this
period that humans (with a generation
time of approximately 20 years) were first
exposed to a vast number of chemicals. By
the mid-1960s these individuals began to
bear children and produced the first gener-
ation of humans exposed to xenobiotics in
utero-the first generation born with xeno-
biotics in their tissues. About 1980 this
generation reached reproductive age.

In the case of long-lived marine mam-
mals, the timing of the recent mass mortal-
ities fits the above exposure model when
factoring in the delay between initial pro-
duction and use of xenobiotics on land and
their reaching the oceans, plus the tremen-
dous dilution factor of the marine systems.
The marine mammals that suffered the die-
offs have generation times of approxi-
mately 10 to 15 years and are indigenous

to highly contaminated enclosed aquatic
regions, such as coastal waters and the
Baltic and Mediterranean seas.

In the past, human epidemiologic stud-
ies designed to determine the outcome of
exposure to a xenobiotic(s) have ques-
tioned only the health of the exposed indi-
viduals. It is not surprising that many
human studies have failed to link adverse
health effects with exposure to xenobiotics
(Type II errors). The lesson learned from
wildlife reveals the importance of consider-
ing the health of the offspring of the
exposed individuals. For example, when
seeking causal links for loss of fertility or
immune competency among cohorts, the
subjects' prenatal and early postnatal expo-
sure must be considered (in other words,
what was their parents' exposure to xenobi-
otics?). Prenatal and perinatal exposure to
xenobiotics probably have more influence
on fertility than any other exposure
throughout a lifetime. Functional deficits
derived from in utero exposure in many
cases may not correlate with only postnatal
exposure. Most important, in light of the
widespread distribution of these chemicals
in the environment, it may be too late to
find unexposed populations.

Evidence is building that xenobiotics
are present in humans at concentrations
that are toxicologically relevant. For
instance, female seals exposed to 27
pg/kg/body weight (bw)/day PCB on a
Wadden sea fish diet were less productive
than seals exposed to 8 pg/kg (bw)/day on
a North Atlantic fish diet (45). They expe-
rienced reduced plasma retinol and fewer
implantations and were more prone to
abort and develop uterine occlusions. The
Wadden Sea population of seals collapsed
from 3000 to 500 animals between 1950
and 1975. Female mink, animals who, like
seals, also have delayed implantation, suf-
fered similar and more severe effects when
exposed to 25/pg/kg (bw)/day PCBs (46).
Similarly, it was estimated that the mothers
of children who experienced impaired
visual recognition memory at 7 months
and short-term memory problems at 4
years were delivering a dose of >27 pg/kg
(bw)/day PCBs to their offspring (47). In

Table 1. Chronological examination of human exposure to synthetic chemicals.

Time span Exposure event

1929 PCBs introduced
1938 DDT first manufactured
1940s-WWII FIRST WIDE SCALE EXPOSURE TO MAN-MADE CHEMICALS
1940s-1950s First generation exposed postnatally
1 950s-1970s First generation born that was exposed in womb
1970s-1990s First generation exposed in womb reaching reproductive age
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the same study it was also estimated that
the mothers (from Michigan) were exposed
to 0.093 pg/kg (bw)/day PCB throughout
their life preceding pregnancy, which pro-
vides a model of the persistence of the
PCBs. By comparison, 52.5% of Inuit
women in eastern Arctic Canada participat-
ing in seven food consumption surveys are
exposed to 0.25 to 3.25 pg/kg (bw)/day
PCB (48). Suckling infants consuming
breast milk at the U.S. average of 0.8 to 1
ppm PCB in milk fat are exposed to 5
pg/kg (bw)/day PCB, five times the
Allowable Daily Intake (ADI) set by the
Food and Agricultural Organization for a
70 kg adult (49). The parents of the chil-
dren in the Japanese rice oil incident (con-
taminated with PCBs and furans) were
exposed to 63 pg/kg (bw)/day PCB for
three months (50), about 1000 times the
lifetime dose of the Michigan mothers.

The average U.S. adult's body burden
of dioxin (2,3,7,8-TCDD), is approxi-
mately 7 to 10 ppt. Dioxin's ability to
induce cytochrome P450 enzymes in rat
liver hepatoma cells (H4IIE) has been used
as a surrogate to describe its toxicity. Using
dioxin as the standard for CP450 activity
on a weight-to-weight basis one can either
measure directly or calculate (using equiva-
lency factors times concentration) the toxi-
city of other dioxinlike compounds in
tissue. The combined 2,3,7,8-TCDD,
dioxin and furan isomers, and coplanar
PCBs in the average adult's body are equiv-
alent to 50 dioxin enzyme toxicity equiva-
lents (TEQs). This is very close to the 64
ppt of pure 2,3,7,8-TCDD fed to pregnant
rats whose male pups experienced abnor-
mal sexual development, sperm count
reduction, and behavioral changes (8). A
recent French report found five coplanar
PCB congeners (total 170 ppb) in human
breast-milk fat that on an H4IIE basis are
equivalent to 6397 2,3,7,8-TCDD TEQs
(51). The breast-milk fat held 1.01 ppm
total PCBs which is similar to the US aver-
age of 1 ppm. In addition, the milk held
307 ppbs of five PCB congeners [numbers

28 (52), 52 (53), 138 (54), 153 (52,54),
169 (55)] that also disrupt the endocrine
system and reproductivity. Double-crested
cormorants exhibit significant increases in
embryo mortality when their eggs hold
approximately 100 dioxin TEQs using the
H4IIE assay, with measurable losses com-
mencing at about 40 or 50 TEQs (16).
A number of laboratory studies suggest

that fertility among human populations,
like wildlife populations, when exposed to
ubiquitous xenobiotics may be at risk. For
example, in repeated trials it was demon-
strated that the sperm of mature male rats
exposed to PBCs postnatally through breast
milk have difficulty penetrating ova or
maintaining a viable zygote (56). In
another study, pregnant rats fed one meal
of dioxin [0.064, 0.16, 0.4, and 1.0 pg/kg
(bw)] on day 15 of gestation gave birth to
male offspring who were demasculinized
and feminized, as determined by morpho-
logical, biochemical, physiological, and
behavioral parameters; their sperm count
was also reduced 75% (8). Many of the
effects were not measurable until the pups
matured. In a follow-up study (1.0 pg/kg
bw) female pups exhibited morphological
changes in external genitalia at birth and a
sequalae of changes in the reproductive
tract that were similar to effects reported in
mice and humans exposed in utero to
diethylstilbestrol (DES) (L Birnbaum, LE
Gray, personal communication, 1993).

The motility of sperm from men expe-
riencing fertility problems (<20 million
sperm/ml) was inversely proportional to
the concentration of three PCB congeners
in their semen; 2,4,5,2',4',5'-hexa-
(no.153), 2,4,5,2',3',4'-hexa-(no. 138),
and 2,4,5,3',4'-pentachlorobiphenyl (no.
114) (53). All three congeners are com-
monly found in human breast milk (57).
Congener 153 comprises approximately
20% of the PCB body burden of people
living in industrialized temperate areas and
40 to 50% of the body burden of native
Americans living in eastern Arctic Canada
(58,59). A meta-analysis that reexamined

61 sperm-count studies revealed that
worldwide sperm count has decreased by
approximately 50% since 1938 (9). A dou-
bling of cryptorchidism occurred in the
United Kingdom between 1970 and 1987
(60,61). Realizing that these effects could
be the result of exposure to elevated
endocrine-disruptors during prenatal devel-
opment, it has been suggested that the
cause may be from environmental contami-
nants (62,63). A significant reduction in
penis size at puberty, among other prob-
lems, has been associated with prenatal
exposure to PCBs and furans among the
offspring of women who consumed PCB
contaminated rice oil in Taiwan (64).

Recommendations
Wildlife and humans are signaling prob-
lems at the population level that biodiver-
sity is at risk. Addressing the problem with
laboratory animal studies on a chemical-by-
chemical basis will not work. The additive
(A Soto, personal communication), syner-
gistic, and other interactive (65) effects of
chemicals already in the environment can-
not be predicted. For ecotoxicology to
meet these challenges it must:
* be more aware of and develop protocols

to assess functional damage in the field;
* test in the laboratory the hypotheses gen-

erated in the field concerning causal
links between wildlife damage and
chemicals;

* find early markers in developing tissue
that predict long-term delayed effects on
functionality for both wildlife and
humans;

* test the hypothesis that there are links
between cell differentiation during devel-
opment and cancer;

* break disciplinary boundaries, reach out,
and collaborate with those responsible
for public health; and

* convince the policy/risk community that
field data have a role in its deliberations.

With this agenda in place ecotoxicology
could bring a "real-world approach" to
decision tables.
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